La SIM de l’IRCAM un petit film…

Voici une petit film qui présente plusieurs SIM (Station d’Informatique Musicale). La bande son « brute » est totalement issue de cette station, il n’y a aucun traitement additionnel !

A propos du travail réalisé avec les SIM (Station d’Informatique Musciales) ou ISPW (Ircam Signal Processing Workstation) vous pouvez consulter mon blog, une rubrique lui est consacrée !

En simplifiant très rapidement on peut dire que la SIM est une version évoluée et intégrée des 4A, 4B, 4C et fameuses 4X développées et utilisées a l’IRCAM dans les années 70 a 90. La SIM a permis la démocratisation de la partie « DSP » (MSP) du logiciel Max !

Et au niveau volume physique et prix un cube NeXT avec 1, 2 ou 3 cartes M860 c’était beaucoup plus abordable (15K$) que l’achat d’une 4X (???$) et l’obligation impérative d’avoir une salle machine pour héberger la 4X plus le VAX nécessaire a son fonctionnement !

Lorsque l’on parle de cette carte dans la littérature technique c’est souvent sous l’un de ces acronymes : S.P.W. (Signal Processing Workstation), I.S.P.W. (IRCAM Signal Processing Workstation) et S.I.M. (Station d’Informatique Musicale) mais ceux-ci induisent en erreur. En effet le nom correct est plutôt certainement carte M860. Il faut comprendre que ces acronymes représentent en fait le nom de la solution complète; c’est-à-dire un NeXTComputer (cube) et une ou plusieurs (au maximum 3) cartes M860 ainsi que d’autres périphériques (interface MIDI, interface audio pour DSP, etc), ainsi que les logiciels (Max/FST, SpecDraw, Spat, Circle, Animal, etc… ) de l’IRCAM nécessaires au fonctionnement de l’ensemble !

Ces logiciels permettent de traiter dynamiquement tous événements MIDI et audio. De faire de la synthèse numérique (VST avant l’heure, granulaire, etc) de la spatialisation multi-canaux, etc…

petit, moyen et gros PCB

Je suis toujours impressionné par l’évolution de l’intégration / miniaturisation des composants mécaniques ou électroniques. Plus le temps passe, plus la miniaturisation est impressionnante et donc l’intégration élevée.

Sur l’image suivante, je me suis amusé à disposer les cartes nécessaires à la production audio de 4 machines, avec en partant de la gauche vers la droite et de haut en bas : cinq cartes d’un Synclavier II de NED, une carte M860 d’une SIM de l’Ircam, une carte d’un CMI IIx de Fairlight et une carte d’une 4X de l’Ircam.

Noter le petit segment blanc (en bas a droite) qui a l’échelle des cartes fait 10 cm.

Comparaison

Dans le détail, voila à quoi servent ces cartes :

  • Les 5 cartes SSn (1 à 5 de haut en bas) d’un Synclavier II, permettent la synthèse FM pour 8 voix. Dans mon synclavier II, j’ai 4 jeux de 5 cartes comme celles-ci, donc 32 voix FM. Les PCB sont double-face. En principe, d’après mes échanges avec Cameron Jones le concepteur du logiciel de la machine, la limite est fixée à 128 voix 🙂 Mais, il n’a jamais entendu parler d’une configuration avec plus de 32 voix FM… Vu qu’il fallait déjà débourser 29 600 $ US en 1981 (voir la liste de prix de 1981 ici) pour avoir 32 voix FM, il ne devait pas y avoir beaucoup de clients pour passer à plus de polyphonie; surtout en payant 5 000 $US par tranche de 8 voix supplémentaires. Et ne pas oublier que cette modification impliquait également de changer le boitier, l’ajout d’une d’alimentation et d’un rack / fond de panier audio supplémentaire !
    Par contre, on trouve bien des Synclavier à 128 voix mais ce sont des versions échantillonneurs !
    Pour avoir plus d’informations sur les Synclavier, vous pouvez consulter le site web que nous avons monté avec mon ami Laurent Lemaire, vous y trouverez documentations et exemples audio et vidéo : ned.synthesizers.fr
  • La M860 est une carte fortement intégrée (1 DSP, 2 CPU, 32Mo de RAM, des entrées / sorties numériques et analogiques, 4 ports séries utilisables en MIDI), conçue à l’Ircam et produite par Ariel (société disparue qui était spécialisée dans la conception et la fabrication de cartes DSP). Les PCB sont multi-couches (4 minimum), la finition est impeccable (étamage, verni, sérigraphie, trou traversant métallisé) et technologie CMS.
    Pour en savoir plus sur cette carte et la Station d’Informatique Musicale, lire mon article concernant la SIM et plus généralement la rubrique sur l’ISPW traitant de l’usage de cet instrument.
  • La carte du Fairlight CMI IIx présentée ici est une CMI 01-A rev3, cette carte représente une voix échantillonnage sur un CMI IIx. Elle intègre un filtre (SSM 2045), 16KB de RAM et le nécessaire pour y accéder et piloter le filtrage et les effets en temps réel. Les PCB sont double face, la finition est impeccable (étamage, verni, sérigraphie, trou traversant métallisé).
    Pour en savoir plus sur les Fairlight, une seule bonne adresse sur le web, celle de mon ami Candor Chasma
  • La carte de la 4X provenant de l’Ircam que je montre ici est une 4U. C’est la carte universelle de la 4X, il pouvait y en avoir jusqu’à 8 dans une 4X. Les PCB sont multi-couches (4 minimum), la finition est impeccable (étamage, verni, sérigraphie, trou traversant métallisé), la curiosité c’est que les pistes sont en fait des fils disposés directement dans la résine…
    Cette carte est un calculateur complet, elle est composée de modules. Par programmation, chaque module peut présenter diverses configurations
    fonctionnelles telles que : additionneurs, soustracteurs, multiplieurs, oscillateurs, lignes à retard et dispersives, etc … et toutes combinaisons de ces éléments.

    Et dans le cadre d’une utilisation dans le domaine électro-acoustique, cette carte sert de générateur de sons : pur, complexe (vibrato, glissando, etc…) effet
    de réverbération.

    Cette carte se compose essentiellement :

    • d’un bloc de calcul,
    • d’une mémoire de formes d’ondes,
    • d’une mémoire de données,
    • d’une table d’adresses,
    • d’une mémoire de microprogrammes
    • de deux blocs de communication avec les bus du Système 4X.

    Ces éléments communiquent entre eux par deux bus internes.

    Je détaillerai dans un article à venir, le fonctionnement d’une 4X, et en particulier l’interaction logiciel / matériel de cette fabuleuse et mythique machine !

4X encore… avec une analyse par "Karlheinz Stockhausen" !

C’est encore en parcourant le web… que je suis tombé sur cette très intéressante traduction d’un article de Karlheinz Stockhausen effectué par Jean-François LAGROST.

Le texte original a pour titre « Elektronische Musik zu Kathinkas Gesang als Luzifers Requiem » il est du 15 décembre 1984, et est paru dans Neuland, volume V, 1984/85, pages 117 à 139.

Quelques extraits :

Depuis l’ouverture du studio de musique électronique à l’IRCAM, j’y ai régulièrement été invité pour des démonstrations d’appareils. Parmi les exemples sonores de la bande de démonstration faite par Giuseppe di Giugno (le réalisateur du synthétiseur 4X), j’ai été fasciné par un exemple de la lente rotation de phases de ce qu’il appelait fièrement le spectre harmonique de « plus de 700 générateurs à phase synchrone ».
À ma première occasion de savoir si, pour moi, la réalisation d’un projet important à l’IRCAM était concevable, je me consacrai alors aux procédés de rotation de phases qui utilisent le synthétiseur 4X.
La 4X a six « plaques » (cartes de mémoire), et chaque carte peut être programmée pour au maximum 64 oscillateurs, quand ils sont utilisés avec un taux d’échantillonnage de 32 000 Hz (bien qu’au-dessus de 16 000 Hz plus rien n’existe). Il y a par conséquent 6 x 64 = 384 oscillateurs programmables. Chaque plaque est divisible en 32 + 32 oscillateurs. Si l’on veut produire une succession continue de spectres, ces plaques doivent être divisées en deux moitiés (avec 3 x 2 sorties chacune, donc 6 potentiomètres), de manière à ce que pendant l’exécution du programme d’une moitié on puisse « charger » l’autre moitié avec un autre programme. En fonction de la complexité du programme, le « chargement » peut parfois durer assez longtemps (dans mon programme parfois jusqu’à six secondes). Ainsi le nombre d’oscillateurs utilisables simultanément est automatiquement réduit de moitié, soit 192 (3 x 64 ou 6 x 32). Les 12 sorties des 6 plaques (chacune divisée en deux) purent être réglées séparément pendant le travail au moyen de 6 x 2 régulateurs de volume sur une table de mixage, et – si nécessaire – filtrées.

Karlheinz Stockhausen

Composition et réalisation

En mai 1983, j’écrivis d’abord un schéma formel pour la musique électronique du Chant de Kathinka, avec explications des symboles. Il contient les informations pour la programmation théorique. J’en discutai avec Marc Battier, un musicien-technicien de l’IRCAM (Paris), avec qui je voulais travailler. En décembre 1983 et août 1984 je réalisai la musique électronique en 2 x 7 jours à l’IRCAM. Marc Battier programma la 4X d’après ma partition en utilisant un ordinateur PDP-11.
Les notes de travail rédigées lors du travail en studio contiennent les données concernant les particularités de timbres et de dynamiques relatives choisies à l’oreille. Ces dernières furent résumées dans un schéma de synchronisation de 4 pages avec 2 x 6 pistes pour la copie de la 4X vers une bande de 16 pistes. Un complément au schéma de synchronisation avec les mesures d’amplitudes est le résultat du mixage (21 août 1984) à l’Espace de Projection depuis le magnétophone 16 pistes vers un magnétophone 8 pistes pour la production d’un original destiné aux représentations. Dans ce schéma j’ai ajouté la numérotation (au-dessus de chaque ) de K1 à K6.
La réalisation fut terminée le 22 août 1984 à l’IRCAM. Les tables d’onde pour les K1-K6, automatiquement reprises, sont datées du 20 juillet 1983; la totalité des tables d’onde notées en ellipses dans le schéma formel sont datées du 14 décembre 1983!; la dernière version de l’explication du nom des partitions et de la partition complète est datée du 20 août 1984.

Du 9 au 14 mai 1985 se dérouleront à l’IRCAM la création mondiale et cinq représentations, avec Kathinka Pasveer (flûte) et une projection 6 pistes de la musique électronique.1 L’oeuvre a dure environ 33 minutes. Son aspect fondamental est la polyphonie spatiale en 6 couches des rotations de phases contrôlées de spectres harmoniques. Une nouvelle orientation de la logique musicale, qui n’était pas réalisable avec les moyens techniques disponibles jusque lors, se dessine dans le domaine de l’harmonique. Les rotations de phases simultanées des groupes de partiels à phases synchrones riches en harmoniques (pour certaines fondamentales et certaines durées d’une rotation, surtout pour des très longues durées et pour quelques relations dynamiques des groupes de partiels entre eux) peuvent être d’une beauté comme jamais on n’en a fait l’expérience. Les changements de rotations de phases lentes ont une logique temporelle tellement intense que l’on peut précisément suivre des quarts, des tiers mais surtout des demiphases; et la convergence des maxima de tous les harmoniques au moment où l’amplitude passe par zéro produit une brève et sèche explosion qui est à chaque fois vécue comme un nouveau commencement libérateur. C’est pourquoi je voudrais sommairement décrire la composition et la réalisation de l’oeuvre. Les commentaires sur la signification du caractère de requiem, les 24 périodes etc., du Chant de Kathinka sont dans l’avant-propos de la partition version pour flûte et six percussionnistes.

Stockhausen dirige Mixtur  a l'IRCAM en 1987

Pour lire la totalité de l’article, télécharger le fichier PDF… ici