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 Eric Lindemann and Maurizio de Cecco
 IRCAM: Institut de Recherche et Coordination
 Acoustique/Musique (IRCAM)
 31, rue Saint-Merri
 F-75004 Paris, France
 elind@ircam.fr

 Animal: Graphical Data
 Definition and

 Manipulation in Real
 Time

 Animal (Animated Language) is a rapid software
 prototyping tool designed for experimentation with
 real-time signal processing and event processing
 systems. The special emphasis is on computer mu-
 sic applications. Animal is an objected-oriented
 programming environment with the usual notions
 of class, method, and instance. A class is defined in
 Animal by designing its graphical representations.
 These representations then serve as interfaces for
 creating and manipulating networks of "live" in-
 stances of classes. Animal provides for persistent
 storage on disk of instance networks, and for reus-
 able libraries of classes, graphic representations,
 and instances.

 Animal is intended as a tool for building "fine-
 grained" graphic applications-musical event list
 editors, synthesizer patch editors, and so forth. A
 graphical interface for a sampling synthesizer sys-
 tem designed with Animal will be discussed in de-
 tail and referred to throughout this article.

 The IRCAM Musical Workstation Environment

 Animal applications are intended to run in the
 IRCAM Musical Workstation (IMW) environment
 (Lindemann et al. 1991). The IMW consists of a
 NeXT host computer, which communicates with a
 high-speed general-purpose multiprocessor. The
 multiprocessor, designed at IRCAM, is configured
 as plug-in boards for the NeXT cube. Each board
 uses two 40-MHz Intel i860 processors along with a
 Motorola DSP560001 processor, which is used as

 input/output processor and direct memory access
 (DMA) controller. Up to three of these boards may
 be plugged into one NeXT cube. All real-time event
 processing and signal processing is carried out by
 the i860 processors. The host computer is used as
 graphics and file server as well as a software devel-
 opment platform.

 A real-time operating system, CPOS (Viara 1991),
 and a "toolbox" for supporting real-time musical
 applications, FTS (Puckette 1991a), have been
 developed for the IMW multiprocessor. When an
 Animal application runs in this distributed envi-
 ronment the Animal objects live on the i860 multi-
 processor but their graphic representations live on
 the host computer. The FTS toolbox provides sup-
 port for creating and deleting objects on the multi-
 processor, dispatching messages between objects,
 and sending and receiving messages from the host.

 Existing Systems

 Rapid prototyping tools for graphic applications fall
 into two main categories: database management
 systems with bundled interface builders, and stand-
 alone user interface management systems (UIMS).
 Examples of commercial database systems with in-
 terface support are 4th Dimension (Ribardiere
 1987), VBASE (Andrews and Harris 1987), and, to a
 lesser extent, Hypercard (Apple 1987). Research sys-
 tems include SNAP (Bryce and Hull 1990), ISIS
 (Goldman et al. 1990), and SIG (Maier and Nord-
 quist 1990).

 The second category of tools are stand-alone user
 interface management systems (UIMS). Examples of
 these systems are NeXT Interface Builder (NeXT
 1989) and UIMX for X Windows/Motif systems
 (Visual Edge 1989).

 Computer Music Journal, Vol. 15, No. 3, Fall 1991,
 ? 1991 Massachusetts Institute of Technology.
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 Database Systems

 Animal is more closely related to the database sys-
 tems mentioned above. These provide a framework
 for defining complex data objects, for browsing and
 manipulating dynamic collections of these objects,
 and for defining links between objects.

 Animal differs from most database interface

 systems in its use of analog representations of
 primitive class attributes. Size and position of
 graphic objects are frequently used to represent
 quantitative data. Animal also encourages the rep-
 resentation of sets of objects by groups of icons ar-
 ranged on a surface. Here again, size and position
 represent data.

 Animal represents composite class structures by
 representations within representations. This tech-
 nique is used in SIG and 4th Dimension. Animal
 provides for multiple fragmentary representations
 of classes. This is supported in 4th Dimension in
 the context of input and output forms for relational
 schema representation.

 Animal is concerned with representation and ma-
 nipulation of object networks. Structured query
 does not play a major role. As a result, Animal
 could not be considered a database system. In addi-
 tion, database management systems are geared to-
 ward efficient search and retrieval of records stored

 from secondary media. Since Animal is used for
 building real-time musical applications, object net-
 works are generally required to stay resident in
 memory. Animal does, however, provide support for
 disk-resident objects in the form of reusable object
 libraries.

 UIMS

 The second category of systems, stand-alone UIMSs,
 are quite useful for designing control panels and
 dialogue boxes. These are more or less static inter-
 faces with fixed numbers of control objects-but-
 tons, sliders, and text fields-arranged in static
 displays. The control objects available in these sys-
 tems generally come from a predefined set. While
 there may be support for adding new control objects

 to this set, there is generally no support for design-
 ing new control objects. This exercise is left for the
 programmer. These systems provide no framework
 for manipulating dynamic collections of objects.

 The Sampler Example

 This section describes, from the end-user's point of
 view, the user interface for a sampling synthesizer
 designed using Animal. Subsequent sections pro-
 vide a detailed look at the various issues involved
 in the construction of this interface.

 The interface is hierarchical in nature, appearing
 as a tree of windows. At the top level of the hier-
 archy is the orchestra window shown in Fig. 1. The
 orchestra consists of a collection of virtual instru-

 ments represented by rectangular instrument icons.
 The relative height of the instrument icons repre-
 sents the relative overall amplitude of the instru-
 ment. By resizing the icon using the mouse this
 relative amplitude can be adjusted. New instru-
 ments can be created by "cloning" the prototype in-
 strument icon that appears above and to the left of
 the instrument collection. Double-clicking the
 mouse on an instrument icon opens its instrument
 window, as can be seen in Fig. 2.

 The instrument window is dominated by a col-
 lection of "samplePatch" icons, which have been
 mapped onto a rectangular region called the "key-
 map." The keymap provides a coordinate system
 with MIDI pitch on the vertical axis and MIDI ve-
 locity on the horizontal axis, so that each sample-
 Patch icon covers a region in pitch-velocity space.
 A sample patch object encapsulates a single sam-
 pled sound (e.g., a recording of a gong or chime) and
 a number of controls associated with that sound.

 When a note is played on a MIDI keyboard control-
 ler, or in general when the instrument object re-
 ceives a "note-on" message, those sample patches
 whose mapping covers the point specified by the
 pitch and velocity of the note-on message will be
 activated. Overlapping sample patches are permit-
 ted, so more than one sample patch may be acti-
 vated by a given note-on message.

 New samplePatches can be cloned from the pro-
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 Fig. 1. Orchestra window
 in run mode.
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 totype found above and to the left of the keymap.
 Double-clicking on a samplePatch opens the
 samplePatch window, visible in Fig. 3, with its in-
 ternal structure consisting of a sound icon, an am-
 plitude envelope editor, a pole plot of a two-pole fil-
 ter, and a center frequency/bandwidth indicator for
 the same two-pole filter. The two-pole filter coeffi-
 cients can be adjusted either by dragging the "X"
 representations in the pole plot or by dragging and
 resizing the light gray rectangle in the center fre-
 quency/bandwidth display. Several number boxes
 display in numeric form the same variables that are
 displayed in analog form by the samplePatch icon
 in the instrument window. Double-clicking on the
 sound icon will send a message to the IMW Signal
 Editor (Eckel 1990), which can display time and fre-
 quency domain representations of the sampled
 sound and provides a rich set of graphical signal
 editing tools.

 The Structure of an Animal Application

 An Animal class definition specifies a template
 data structure consisting of primitive objects (float-
 ing-point number, integer, string, etc.), arrays of
 primitive objects, pointers to other objects which
 are instances of classes defined in the class table,
 and lists or sets of pointers to objects. A set of meth-
 ods is also associated with the class. An Animal ap-

 plication maintains a table of class definitions.
 The class system Animal uses is defined by the

 FTS toolbox, which forms part of the IRCAM Musi-
 cal Workstation. When Animal generates class defi-
 nitions it is generating FTS class definitions. The
 FTS class system is built on top of C and is compat-
 ible with C+ +. In line with C+ + compatibility,
 pointers to objects are typed. Pointers may only re-
 fer to objects of the specified type (class) or to one
 of its subtypes (subclasses). The FTS toolbox pro-
 vides special support for incremental class defini-
 tion, run-time type checking, and dynamic linking
 of methods.

 All the objects in an Animal application are in-
 stances of classes in the Animal application class
 table. These objects live in main memory on the
 real-time multiprocessor. The graphic representa-
 tions of these classes live on the host computer.
 The methods for classes generated using Animal
 are defined by the application designer and written
 in C or C+ +. All of these methods run on the real-
 time multiprocessor. The Animal application de-
 signer writes no code that runs on the host.
 With their pointer references, the objects in an

 Animal application form an evolving object net-
 work. Animal maintains a separate "proxy net-
 work" on the host computer, which is a direct
 reflection of the object network on the multipro-
 cessor. This relationship is shown in the top part
 of Fig. 4.

 80 Computer Music Journal
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 Fig. 2. Instrument window
 in run mode.
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 Fig. 3. SamplePatch win-
 dow in edit mode.
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 Fig. 4. Object networks.
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 There may be one or more graphic representa-
 tions defined for each class in the class table. A
 graphic representation is said to be bound to the
 class it represents. A graphic representation main-
 tains slots that are bound to instance variables of
 the class. There may be more than one slot bound
 to the same instance variable. Slots, in turn, con-
 tain representations of the instance variables they
 are bound to.

 These instance variables may be primitive objects
 or pointers to complex objects. The representation
 contained in a slot may be a complex representa-
 tion of the object pointed to by this instance vari-
 able. Representations are thus recursive structures,
 with representations containing slots containing re-
 presentations, etc.

 Example

 The sampler instrument window is a representation
 of the Instrument class. It has a slot that contains a

 representation called "keymap." The keymap is a
 representation of the Set class. The Set representa-
 tion has a variable number of slots for representa-
 tions of instances of the SamplePatch class. The
 representation of instances of the SamplePatch
 class used in the keymap takes the form of a rectan-
 gular icon. The position, width, and height of these
 icons represent the values of instance variables of
 the samplePatch class. There is also an independent
 window representation of the samplePatch class.
 The instance variables that are represented by the
 samplePatch icon are also represented as number
 boxes in the samplePatch window.

 At any time there may be many windows visible
 on screen with representations of instances of dif-
 ferent classes, of different instances of the same
 class, or with multiple representations of the same
 instance.

 Example

 In the samplePatch window there are two represen-
 tations of a single instance of the TwoPoleFilter
 class. One representation shows a standard Z-plane
 pole plot. The other is a linear center frequency/

 bandwidth representation. The graphic representa-
 tions interact with their multiprocessor instances
 through the intermediary of the proxy network.
 This relationship is shown in the bottom part of
 Fig. 4. Each object in the proxy network maintains
 a pointer to its counterpart on the multiprocessor.
 The graphic representations maintain pointers to
 their respective instances in the proxy networks. As
 the instance variables of objects are modified on the
 multiprocessor, update messages are sent to the
 corresponding proxy objects in the host network.
 These update messages reflect all the changes of
 value that have occurred in the object. The update
 message is sent explicitly during method execution
 on the multiprocessor.

 The application designer defines these methods
 and, thereby, controls when host updates occur.
 The update message is always of the same form-
 UPDATE. This is a macro provided by the FTS tool-
 kit that remains the same regardless of the class
 structure of the object. When a proxy object re-
 ceives an update message it broadcasts it to all vis-
 ible representations of that object. These messages
 are optimized so that only information necessary
 for each representation is included in each message.

 When the user interacts with a representation in
 a way that is intended to modify some instance
 variable-dragging one of the poles in the pole plot
 representation of the two-pole filter, for example-
 then a message is sent to the proxy object, which in
 turn sends a message to the multiprocessor object.
 Update messages are also sent to any other visible
 representations of the instance, so, for example, the
 center frequency/bandwidth representation would
 be updated.

 Why couldn't we dispense with the host's proxy
 network and have the multiprocessor objects in-
 teract directly with their graphic representations?
 This would require that the multiprocessor objects
 be kept informed of the comings and goings of their
 various graphic representations and broadcast mul-
 tiple update messages directly to them. This would
 weigh down the system, whose main responsibility
 is to keep up with the real-time calculation load.

 The proxy network also maintains certain kinds
 of instance data which are not sent to the multi-

 processor. Instance specific comments typed into a
 text field are an example. The archival of an Ani-

 84 Computer Music Journal
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 mal application is accomplished by archival of the
 proxy network. The multiprocessor system is sent a
 message to update all host objects. When this is
 complete, the proxy network is archived along with
 the class table for the application. The multiproces-
 sor network is not archived directly. While restor-
 ing the proxy network on the host, messages are
 sent to the FTS "object factory" to rebuild the mul-
 tiprocessor network in the image of the proxy
 network.

 Instance Variable Properties

 A number of properties are associated with the in-
 stance variables in a class,

 Type

 This property defines the type or class of the vari-
 able. Subclasses qualify as the same type as their
 ancestors.

 Unit

 This defines the unit of measurement for a primi-
 tive numeric type (centimeters, Hertz, etc.). The
 significance of these will become apparent when we
 discuss Animal rulers,

 Archive

 This property applies to pointer instance variables.
 When the representation of one object in the object
 network is copied, generally the intention is not
 simply to copy that object but to copy a subnet-
 work of objects emanating from that object. In the
 instrument window, if one clones a new sample-
 Patch object with the intention of mapping it onto
 the keymap, one must also clone a new twoPole-
 Filter and gain slider. The sound pointer in the
 samplePatch is more complex, however. A new
 sound should not be cloned, but it is unclear
 whether the new sound pointer should refer to the
 old sound or should be void. The archive prop-
 erty of a pointer defines this kind of behavior.

 It can be seen that archive properties define
 the scope of composite Animal objects. This is be-

 cause all instance creation in Animal is based on
 cloning existing instances. This cloning procedure
 is accomplished by first archiving an instance to a
 stream-in memory or on disk-and then restoring
 it as many times as needed,

 There are three possible values for the archive
 property: Copy, ReferToCopyElseOld and
 ReferToCopyEls eVoid.
 A value of Copy implies that the system should

 copy the object pointed to.
 Setting the archive property to Ref er_To_

 Cop y_Els e Old will not force a copy, but, if as a
 result of a different pointer path the object origi-
 nally pointed to was copied as part of the subnet-
 work, then the pointer will be set to point to the
 new copy. Otherwise it will refer to the original ob-
 ject pointed to.
 The meaning of the value Ref e rToCop y

 ElseVoid is the same as Refer_ToCopy_ Els eO1 d except that the pointer will point to a
 void address if the object pointed to was not part of
 the copied sub-network.

 Example

 Figure 5a shows an object graph for a hypothetical
 application. Every pointer instance variable corre-
 sponds to a directed arc in this graph. Figure 5b
 shows the result of copying node A. Note that both
 B and C were copied since the archive property of
 the instance variables of A which point to B and C
 are both Copy. The archive property of the in-

 stance variable of B that points to E is R e fe r1T o_ Cop yEls eV oi d. E was not copied, so the copy
 of the instance variable that pointed to E now points
 to void (i.e., nowhere). D is copied since the in-
 stance variable of B pointing to D has archive
 property Copy. The instance variable of C point-
 ing to D has archive property ReferToCopy_
 Els eOld so, C' points to D'. However, when C'
 is copied by itself when C" still points to D' as
 shown in Fig. Sc.

 Graphical Class Representations

 As described in the previous section, a representa-
 tion can contain slots that contain other represen-
 tations. The position and size of a representation
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 Fig. 5. (a) Original object
 network. (b) Copy of sub-
 network with root at A. (c)
 Copy of subnetwork with
 root at C'.

 Ref Copy or Void E

 Copy Copy

 Copy Ref Copy or Old

 CopyRef Copy or Old
 figure 5S

 D Ref Copy or Old
 figure 5c

 may be used to represent numeric values. Any rep-
 resentation can therefore be considered to have four

 implicit slots-x, y, width, and height-containing
 analog numerical representations. A representation
 may also contain purely decorative elements that
 are not considered to occupy slots.

 Example

 In the full window representation of the Orchestra
 class, the different instruments are represented by
 rectangle drawings whose height represents the
 "gain" instance variable of the Instrument class. In
 the pole plot representation inside the samplePatch
 window the center position of the "X" shaped ele-

 ments is used to represent the complex magnitude_
 phase instance variable of the twoPoleFilter class.
 A representation can be bound to a class. During
 the course of designing Animal applications this
 binding may change. A slot can be bound to an in-
 stance variable of a class. There may be more than
 one slot bound to the same instance variable.

 A slot may be left unbound. That is, it may not
 be associated with any instance variable of a class.
 The slot may nevertheless contain a representation.
 This representation will be bound with the first
 class encountered when climbing up the "slot hier-
 archy." For example, if the unbound slot is itself a
 part of a representation which is bound to a class,
 then the representation contained in the unbound
 slot will also be bound to this class.

 Example

 In the samplePatch window there is a representa-
 tion of a slider labeled "GAIN." This slider repre-
 sentation occupies a slot in the samplePatch win-
 dow representation. This slot has been left unbound.
 The slider representation itself has a slot that con-
 tains an analog representation of a primitive nu-
 meric value-the "knobby." Because the slider
 representation has been left unbound, the slot con-
 taining the knobby representation can be bound di-
 rectly with the samplePatch class and the position
 of the knobby can be used to represent a numeric
 instance variable of this class. It is important to
 note that the slider representation has not been
 completely decimated by this binding scheme. It
 still maintains its identity as an interface object
 and still occupies a slot. The slider, in fact, plays an
 active interface role because it contains a Ruler ob-

 ject that measures the position of the knobby and
 constrains the knobby to move only within certain
 limits. Rulers and related objects are discussed in
 detail below.

 Some representations may appear in stand-alone
 windows. There is nothing privileged about these
 representations. The same class representation may
 appear in one place as a separate window and in an-
 other place imbedded inside a pointer slot of an-
 other representation.
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 Slot Properties

 The behavior of slots is defined by a number of
 properties. The representation property selects the
 graphic representations used by the slot. There may
 be a menu of possible representations specified from
 which the end user can choose. If the slot is bound
 to a pointer instance variable, then the representa-
 tion property specifies the particular class repre-
 sentation to be used when displaying this instance
 variable. A representation must be specified for the
 basic class of the pointer. Additional representa-
 tions may be specified for any subclasses.

 A null class representation is used when the
 pointer is void. If no null representation is speci-
 fied, then one is automatically derived from the
 basic class representation. The derived null rep-
 resentation is usually just the image of the basic
 representation drawn in light gray.

 A selected representation is used when the slot
 and its representation are selected. If the represen-
 tation is selected and no selected representation has
 been specified, then one is derived by highlighting
 the standard representation.

 A full window representation is used if opening
 a new window on double-click is enabled using
 the "Open" property. One kind of full window rep-
 resentation involves a call to another host applica-
 tion to open a file name associated with the object.
 The full window representation of sound in the
 samplePatch window involves a call to the IMW's
 Signal Editor application.

 Example

 In the samplePatch window only one basic sound
 representation has been specified. If the sound is re-
 moved a null representation is derived from this to
 show that the sound slot is empty.

 Assignment and Replacement Properties

 For slots bound to primitive instance variables the
 assignment property is ignored and the replace-
 ment property specifies whether a value can be

 changed. For slots bound to pointer instance vari-
 ables, these Boolean properties tell whether a rep-
 resentation of an instance can be placed in the slot,
 possibly replacing the instance already there. This
 corresponds to an assignment into the instance
 variable pointer the slot is bound to. In the case
 of a newly created instance being assigned to the
 pointer, the accept/reject assignment policy of the
 slot also depends on the archive property of the
 pointer instance variable being assigned.

 If the archive property is one of the two flavors
 of reference mentioned in the previous section,
 then the assignment is rejected since the newly cre-
 ated object would be lost if the object is ever copied
 or archived to disk. Assignment of reference copy
 representations do not have this problem. When the
 archive is made the system guarantees that only
 one copy of a given object is archived even if the
 object is referred to from two slots, both of which
 have a Copy archive property. If the slot is not bound
 to an instance variable, then assignment and re-
 placement are disabled.

 Example

 In the samplePatch window only the Sound slot has
 assignment and replacement enabled. The archive
 property of the sound pointer instance variable is
 R e f e r_T oC op y_El s e_V o i d. This is because
 sounds are all supposed to be taken from a shared
 sound library (see the section on reusable libraries
 below). As a result, only a reference to a sound can
 be placed in this slot. The other pointer slots-
 the two-pole filter representations and the gain
 slider-have assignment and replacement disabled.
 The number boxes have replacement enabled so the
 values can be modified.

 Copying and Removal Properties

 These only apply to slots bound to pointer instance
 variables. The remove property determines whether
 the representation currently in a slot can be re-
 moved from the slot, corresponding to deassign-
 ment of the instance variable. There are two copy
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 properties. Copy tells whether a deep copy can be
 made of the representation and of the instance it
 represents. Reference tells whether a reference copy
 can be made.

 Example

 In the Instrument window the slot that the "proto-
 type" samplePatch appears in, which is just above
 and to the left of the keymap, has its remove and
 reference properties disabled, but copy is enabled.
 This allows the prototype to be cloned and new
 instances placed into the keymap. In general, this
 approach can be used to set up palettes of clonable
 objects. The sound slot of the samplePatch window
 has remove and reference enabled but copy dis-
 abled, since copies should only be made explicitly
 from the sound library.

 Drag and Resize Properties

 The drag property allows the slot and the represen-
 tation inside of it to be dragged around until they
 encounter a "wall" (see below). There is an implicit
 wall along the perimeter of every representation, so
 that a slot and the representation inside cannot be
 dragged out of the representation that contains the
 slot. Resize allows the dimensions of the slot and

 representation inside to be resized as long as the
 resize does not get blocked by a wall. Drag and re-
 size may be constrained to be horizontal or vertical
 only. The select and open properties make it pos-
 sible to select a slot or open its full window rep-
 resentation. Open works only if a full window
 representation has been specified.

 Properties Associated with Instance Variables

 A slot can be considered to have the properties that
 are associated with the instance variable it is bound

 to. For example, type is associated with an instance
 variable so the slot can be considered to have a type.
 Different slots bound to the same pointer may have
 different slot properties. This allows context-depen-
 dent user interface behavior.

 Regions, Walls, Rulers, and Sets

 A region delimits a rectangular space within a rep-
 resentation. As mentioned above, the perimeter of a
 representation forms an implicit walled region for
 the slots inside the representation.

 Additional explicit regions can be defined within
 a representation. A region is a kind of prefabricated
 representation that may or may not be bound to a
 class. A region possesses a region_type property
 which may be different from the type of the class
 the region is bound to. The main function of a re-
 gion is to generate system messages when a slot or
 a representation of the specified type enters or exits
 the region.

 Walls, Rulers, and Sets are kinds of Regions.
 These form a multiple inheritance cluster in the
 sense that a Region may possess any combination
 of Wall, Ruler, or Set properties. These properties
 are presented to the Animal application designer
 as a number of options for the basic Region repre-
 sentation.

 Region Extent

 For a simple region the extent is the same as the pe-
 rimeter. A region may be made scrollable, however,
 in which case the perimeter is considered to be a
 window into a larger space. This space may be fi-
 nite or infinite in any of four directions-up, down,
 left, or right.

 Wall Properties

 The wall properties of a region may allow entry and
 exit for slots of the regiontype or one of its sub-
 types. They may allow entry only, exit only, or no
 entry or exit. Slots not of the regiontype are al-
 ways excluded. Since region_type can be specified
 as the root class in the inheritance tree, this means
 a region could allow any types to enter. Note that
 entry and exit rights refer to slots, not to represen-
 tations inside a slot.
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 A Region representation may be bound to a Re-
 gion class. This is a real class with instances that
 live on the multiprocessor. Subclasses of the region
 class can implement methods that respond to entry
 and exit of objects. These methods can override the
 default region behavior and provide their own crite-
 ria for accepting or rejecting entry or exit.

 A number of things may occur when attempting
 to drag a slot containing a representation into a re-
 gion. If the slot is of the correct type, and entry is
 enabled, then the slot and its representation are al-
 lowed to pass into the region. If the slot is of the
 wrong type or entry is disabled and the slot has its
 remove property disabled, then the slot and its rep-
 resentation are blocked at the region wall. If, on the
 other hand, the slot's remove property is enabled,
 then the slot will be blocked at the region wall and
 its representation will be dragged out of the slot
 and into the region. At this point the slot will dis-
 play its null representation. If the newly unbound
 representation is deposited in a slot inside the re-
 gion, then it will stay there. If it is let go without
 being accepted by a slot in the region, then it will
 spring back to the slot from which it came. These
 same dynamics apply to dragging slots and repre-
 sentations out of regions.

 Ruler Properties

 A region can define a metric space. Ruler regions
 have unit properties associated with their x and y
 axes. Variables associated with the position and size
 of representations, which have the same unit prop-
 erties as the ruler axes, will be measured by these
 axes. Rulers have minimum and maximum values

 specified over their measurement region. A Ruler
 representation may be bound to a Ruler class. The
 minimum and maximum values of the ruler repre-
 sentation can be bound to instance variables of this

 class so that they can be manipulated by applica-
 tion-specific methods running on the multiproces-
 sor. A Ruler that has been bound to a class can have
 additional variables associated with its own size

 and position. These variables can be measured by
 other Rulers, so that a system of nested moving co-
 ordinate systems can be set up.

 Set Properties

 If a region has its set property enabled, then un-
 bound representations of the correct type which en-
 ter the region will have a slot automatically created
 for them, permitting them to remain in the region.
 The slot and the representation inside it become
 part of the region set. A minimum and maximum
 range property is associated with the set; these
 specify the minimum and maximum number of
 objects the set can hold and may be zero and in-
 finity, respectively. A Set is always bound to a
 real set class. The instances of Set exist as objects
 on the multiprocessor and can be manipulated
 by application-specific real-time methods.

 Set Slot Properties

 These are the slot properties of the slots in the set.
 They all have the same slot properties. A set slot
 has all the same properties as a standard slot. If a
 representation is removed from a set slot and de-
 posited elsewhere, then the original set slot disap-
 pears. For this reason the assignment property of
 set slots is ignored. The set slot properties are not
 to be confused with the slot properties of the slot
 that the Set itself occupies. If a Set is moved, all the
 objects in the Set move with it. Any of the proper-
 ties of the slot the Set occupies may be enabled:
 drag, copy, replace, assignment, and so forth. This
 allows copying and moving sets of objects as a unit.

 Example

 In the instrument window of the sampler example,
 the keymap is a Region with Wall, Ruler, and Set
 properties enabled. The region_type is sample-
 Patch. Its Wall properties deny entry and exit to all
 slots, so only unbound objects can be dragged in. If
 an unbound samplePatch is dragged into the region,
 then a samplePatch slot is created and the sample-
 Patch becomes part of the keymap Set. This is
 usually done by "deep-copying" the prototype
 samplePatch, which appears above and toward the
 left of the keymap. Representations that are not
 samplePatches will be rejected. The set slot proper-
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 ties have replace, copy, remove, drag, and resize en-
 abled. This permits samplePatches inside the key-
 map to be copied and mapped anywhere across the
 region. Reference is disabled, so no reference copies
 of samplePatches can be made. The variables asso-
 ciated with the position and size of the sample-
 Patch representation have pitch and velocity units.
 These correspond to the pitch and velocity units
 that are part of the Ruler properties of the keymap
 region. The keymap region is nonscrollable.

 Using Animal Applications

 Only a handful of operations are available to the
 end user of an Animal application. These include
 the instantiation of objects, where by objects we
 mean instances of classes from the class table and

 representations of these instances; placement of
 these objects in slots; creation of references to
 objects, which are new representations of old in-
 stances; movement of objects between slots; and al-
 teration of the values of primitive variables. The
 user also controls visibility and arrangement of
 windows.

 To move an object, one simply drags its represen-
 tation with the mouse. To create an object, an ex-
 isting object can be cloned by dragging on it with
 the "alt" key depressed. This makes a deep copy of
 the object.

 Dragging on an existing object with the "control"
 key depressed creates a reference copy of that ob-
 ject. A new representation (that refers to the same
 instance) is created and can be stored in some ap-
 propriate slot. The ability to move, deep copy, or
 reference copy depends on the Copy and Drag
 properties of the source slot. Objects can also be
 created by opening the class browser, selecting an
 object type, and dragging the object that appears in
 the icon view of the browser while the "alt" key is
 held down.

 When "alt-dragging" or "control-dragging" to
 create an object or reference, the destination of the
 drag must be a suitable slot. The slot type must be
 correct and the slot assignment properties must
 permit the completion of the assignment. If assign-
 ment is rejected, then no new object is created.
 Graphical feedback is provided when copying and

 moving objects. When copying, the original repre-
 sentation is left in place and a second one moves
 with the mouse. When removing a representation
 from a slot the slot shows the null representation.
 When a representation is dragged over its destina-
 tion slot the representation to be replaced will be
 highlighted if the assignment can be completed.
 If the mouse is released without the representa-
 tion being successfully assigned to a slot, then the
 representation springs back to its original slot.

 When an assignment is completed, the represen-
 tation of the class that appears in the slot depends
 on the slot representation property, rather than that
 of the representation that was dragged. A full win-
 dow representation can be dragged into a tiny slot
 and will result in a tiny icon representation if that
 is what is specified by the destination slot. Values
 of instance variables are modified by resizing or
 moving objects that have had variables associated
 with their size or position, or by typing in number
 or text boxes. One can also click and drag on num-
 ber boxes to alter their values.

 Designing Animal Applications

 The designer of an Animal application must cre-
 ate classes, add and delete instance variables from
 classes, define methods for classes, create graphic
 representations of classes, bind graphical repre-
 sentations to classes, create slots and regions in-
 side class representations, bind slots to instance
 variables, and define the "choreography" of the
 application-that is, which windows and represen-
 tations appear as a result of which events.

 The application designer performs all the user
 functions of instance creation and assignment as
 well, so that an application is initialized with a
 proper default object network with all instance
 variables set to appropriate values.

 The environment for creating and modifying
 classes is essentially an extension of the user envi-
 ronment. The designer sees all the same graphic
 class representations that the user sees, and it is by
 direct manipulation of these representations that
 classes are created and modified. Animal encour-
 ages a flexible approach to application design. One
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 can start by drawing a picture, then declare this
 picture to be a representation of a new or existing
 class. Alternatively, one can start by defining a new
 class, and then attach some existing representa-
 tions to it. These representations may be "stolen"
 from other classes. One can create instances of a

 class and afterwards modify the class structure.
 This causes an automatic update of all existing in-
 stances of the class. One can add or modify represen-
 tations of classes that have existing instances. The
 philosophy is incremental, unconstrained applica-
 tion prototyping through progressive refinement.

 Many of the operations involved in application
 design (the various binding operations, instance
 variable creation, etc.) are performed implicitly
 while designing representations. Almost all class
 definition is accomplished through design of the
 class representation. The philosophy is, as much as
 possible, to provide the illusion of "drawing" the
 application.

 Animal has two modes of operation-edit mode
 and run mode. The user of an application is always
 in run mode. The designer of an application may
 switch between the two. When copying, dragging,
 and resizing representations of instances one uses
 the standard "Pointer Tool." In edit mode a new

 tool, the "Designer" tool, becomes available. The
 Designer tool is used to manipulate instance vari-
 ables and slots in the same way the Standard tool is
 used to manipulate instances and representations.
 There are a number of inspectors that can be used
 throughout the design process. The representation,
 slot, class, and region inspectors are among the
 most important.

 To create a new full window class representation
 one executes the New Window command in the

 Representation submenu. A class table browser
 pops up with options for selecting a class for the
 representation, creating a new class, or canceling
 the operation. Note that a full window representa-
 tion is always bound to a class. In edit mode one
 can immediately begin drawing in the new window.
 The standard "Macdraw" interaction style is used.
 Drawing tools are selected to create lines, circles,
 and polygons. Line widths, gray levels, and fill pat-
 terns can be specified. In addition to the standard
 draw tools and the Designers tool, special Region
 and Method tools are available.

 Fig. 6. (a) Region declared
 as walled ruler in edit

 mode. (b) Knobbie added
 to gain slider. Variables
 and point of origin will
 disappear in run mode.
 (c) The slider has been

 grouped, but we leave it
 unbound so that the inter-
 nal gain variable contin-
 ues to be bound to the
 gain instance variable
 of the surrounding
 representation.

 figure 6b

 - - - - - --- - -- -- - -- - -- - -- -- --

 - - --------~

 gain~~i::::~~:i~~~

 figure 6c

 Example: Creating the Gain Slider

 Suppose that we want to construct the GAIN slider
 in the samplePatch window of the sampler ex-
 ample. First, we draw a Region using the Region
 tool. The region looks like a rectangle the size of
 the slider. We use the region inspector to declare
 the region to be a Walled Ruler. This pops up num-
 ber boxes around the newly declared Ruler region,
 where we can set the minimum and maximum
 scale of the ruler as in Fig. 6a. We keep the default
 of 0 to 100.

 Next, we design a knobbie inside the ruler by
 drawing a filled gray rectangle with a vertical line
 in the middle and grouping the line with the rect-
 angle. We want to associate the knobbie with a gain
 variable so we select it and enable an x position
 variable using the representation inspector, which
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 provides a choice of x, y, height, and width vari-
 ables. This is shown in Fig. 6b. Declaring the knob-
 bie as a primitive numeric representation auto-
 matically creates a slot for it in the full window
 representation. A point of origin marker appears in
 the center of the knobbie. We can move this around

 if we wish, but we choose not to. A text box ap-
 pears next to the knobbie with an indication that
 the slot is currently unbound. We type in "gain" as
 the name of the instance variable that we wish to

 bind to. If the samplePatch class represented by the
 full window has a numeric "gain" instance variable
 already defined we will bind to it. If not, one will
 automatically be created with type float. The type
 can be overridden in the class inspector. We set slot
 properties of the knobbie using the slot inspector.
 We want to be able drag it horizontally. Everything
 else is disabled. We also type gain as the name of
 the variable the ruler will measure, overriding the
 ruler's default "x."

 Next, we group the ruler and the knobbie to indi-
 cate that we want these elements to be part of a
 single representation so that we can easily reuse it
 the next time we need a slider. This is shown in

 Fig. 6c. The grouping action creates a new represen-
 tation with two slots, one for a ruler and another
 for a numeric value. The slots that the ruler and

 knobbie occupied in the samplePatch representa-
 tion are removed. A new text box appears that al-
 lows us to specify a variable we want the slider to
 bind to and indicates that the slider is currently un-
 bound. Since the slider is unbound the gain knobbie
 remains bound to the samplePatch gain instance
 variable. Happily, this is exactly what we want. The
 variable name text boxes and the point of origin
 marker appear only when the objects are selected
 using the Designer tool.

 Sometime later we might decide that we do in
 fact want the slider to represent an instance of a
 Slider class. We can select it with the Designer tool
 and type a name of an instance variable in the un-
 bound text box. We type gainSlider. Since there is
 no gainSlider variable in the samplePatch class, and
 since it is not a numeric primitive representation, a
 class browser appears with a field in which we can
 type a new class name. The field already shows an
 intelligent-guess "GainSlider". We select New to

 create the class. A gainSlider instance variable is
 created in the samplePatch class and the slider rep-
 resentation is bound to it.

 Since the slider representation is now bound to a
 class, the knobbie representation will become un-
 bound from the samplePatch gain instance variable
 and bound to a new gain variable, which will be au-
 tomatically created in the GainSlider class.

 Grouping and Merging

 Grouping representations always creates a new rep-
 resentation with slots for all of its components.
 "Merging" representations, on the other hand, tries
 to combine the slots of all representations into a
 single one. There are rules associated with merging
 and unmerging representations. If multiple primi-
 tive representations are merged, the effect is the
 same as grouping. Regions and their decedents are
 considered to be primitive in this context. If primi-
 tive representations are merged with a nonprimi-
 tive representation, then the primitive representa-
 tions are added to the nonprimitive one.

 Example

 In defining the pole plot representation, we may al-
 ready have defined a representation for the back-
 ground, merging rulers and decorations. If we then
 define the "X" objects as primitive numeric repre-
 sentations and merge them with the rest, they will
 be added to the pole plot representation.

 If we merge multiple nonprimitive representa-
 tions, only one of which is bound to a class, the un-
 bound representations will be added to the bound
 one and any bound slots in the unbound representa-
 tions will be bound to the class being represented,
 adding instance variables are required. Finally, if
 multiple bound nonprimitive representations are
 merged, a dialogue box will appear asking which
 of the bound classes to merge to.

 Unmerging a representation moves all the slots of
 the merged representation to the surrounding repre-
 sentation, preserving the binding of the slots.
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 Creating and Copying

 In the previous gainSlider example we created rep-
 resentations and slots implicitly by declaring primi-
 tive representations, binding, and grouping them.
 We can also select any decorative graphical element
 and declare it to be a representation by executing
 the Choose Class command from the system
 menu. This causes the class browser to pop up with
 options to select an existing class or create a new
 one. As a shortcut, if an existing bound representa-
 tion was included in the selection along with the
 decoration, the browser will show the bound class
 as being selected.

 One can also use the Choose Class command

 to explicitly change the binding of a representation.
 When the class binding has been changed, all slots
 within the representation will become unbound
 and must be rebound to instance variables of the

 new class. To accelerate binding of slots to instance
 variables name completion can be used, so that the
 entire instance variable name need not be typed
 into a variable text box.

 All of the copying and moving options-drag, alt-
 drag, control-drag-which are performed on repre-
 sentations of instances using the Pointer tool have
 analogous effects on slots and instance variables
 when performed using the Designer tool.

 "Alt-dragging" on a representation with the De-
 signer tool will make a copy of the representation
 and the instance variable it is bound to. These cop-
 ies can be deposited in any representation. The des-
 tination representation is defined as the nonprimi-
 tive representation that physically surrounds the
 copied representation. A new slot will be created in
 this representation. The copied instance variable
 will be added to the class that the new slots binds

 to. If there is already an instance variable of the
 same name, then a new default name will be de-
 rived from the old name.

 Control-dragging on a representation with the
 Designer tool will create a new copy of the repre-
 sentation. Depositing this copy in another repre-
 sentation of the same class will create a new slot
 that is bound to the same instance variable as the

 original. We have essentially made a reference copy
 of the instance variable. The copy will be rejected if

 it is made to a representation that is bound to a dif-
 ferent class.

 A representation can be replaced with another by
 dragging the new representation on top of the old
 using the Designer tool. If the source representation
 was already bound to a class and had slots that were
 bound to instance variables of that class, then this
 operation will try to match up instance variable
 names to preserve similar slot bindings. A represen-
 tation can also be changed by selecting it an execut-
 ing Choose Representation from the system
 menu. A representation browser will appear from
 which a new representation can be selected.

 Choreographing the Interace

 Animal provides a number of easy-to-use predefined
 mechanisms for helping to choreograph an inter-
 face. If these are not sufficient, then the event
 mechanisms described in the next section can be
 used to build custom user interface behavior. We

 have already discussed the default, null, and se-
 lected representations. If a custom one is defined
 it can be assigned to the slot by selecting null
 (selected) in the slot inspector and then dragging
 the desired representation into the slot using the
 Designer tool. If we want a particular full win-
 dow class representation to pop up when we open
 (double-click) a representation in a slot, then we
 need only double-click on the slot and a browser
 will appear allowing us to select from the currently
 defined representations or to create a new one.

 Garbage Collection

 Counts of two kinds of references are maintained in
 Animal: references of slots to instance variables

 during interface design; and references to graphic
 representations to proxy network/multiprocessor
 instances. The latter are always maintained. In-
 stance variables are deleted from a class when there

 are no longer any slots bound to them. Objects are
 deleted from the system when there are no longer
 any possible representations of them (whereby
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 a representation may exist as a possibility even
 though it may not be visible).

 Multiprocessor methods may create instances of
 Animal classes. If the pointers to these instances
 are assigned to pointer instance variables of objects
 that have representations on the host, then the
 standard update mechanism will notify the host
 of their existence and enable reference counts for

 them. Some objects may not be accessible to the
 host-objects held in user-defined static variables,
 for example. No reference counts are kept for these
 and pointers which these objects maintain to ob-
 jects which do have reference counts will not affect
 those reference counts. This can lead to dangling
 references, so extreme care should be taken by the
 programmer.

 Since Animal instance graphs may be cyclic, the
 possibility exists of reference counts that never fall
 to zero. These objects represent "dead" space. They
 will not be archived with an application, so the
 memory loss involved is not permanent. If this be-
 comes a serious problem in the Animal system,
 then a separate manually invoked mark-and-sweep
 garbage collector will be added with the possibility
 of manual invocation to avoid pauses at critical mo-
 ments in the real-time computation.

 Events and Actions

 Events and actions provide a mechanism for cus-
 tomizing interface behavior and for controlling this
 behavior from application-specific methods running
 on the multiprocessor. This customization can
 override or extend the standard Animal behavior re-

 lated to copying, moving, selecting, and opening
 objects.

 Events

 Events are a way to represent and communicate the
 fact a particular "something interesting" has hap-
 pened. Events are coded as ASCII strings that can
 be intnerpreted as event names. Two events are
 considered the same if they have the same name.

 When an event occurs as a result of a user or sys-

 tem action, the fact is signaled by carrying out an
 operation known as "raising" or "invoking" the
 event.

 Events are divided into two categories: predefined
 system events and user-defined events. The prede-
 fined events are raised as a consequence of a user
 action such as typing, clicking, or dragging.

 User-defined events have semantics that are de-

 fined entirely by the application designer. They are
 invoked from methods running on the multiproces-
 sor or are specified as arguments to a predefined
 "action."

 An event is raised in a particular context. When
 the context involves graphical interaction, the
 event will be raised inside a particular representa-
 tion or slot. If the context is the internal compu-
 tation performed by the multiprocessor or by the
 Animal process, the event will be raised inside an
 object instance.

 Most-but not necessarily all-predefined events
 will be raised in the context of representation. User
 events that are invoked from methods on the mul-

 tiprocessor are raised in the context of an object
 instance.

 Actions

 Actions are specific operations that Animal is able
 to perform. These operations are given names in
 order to allow the user to customize the Animal

 behavior-specifying an action to be performed in a
 particular situation, for example, when a particular
 event is raised in a given context.

 The set of possible actions is predefined and is
 not user extensible. This is because actions are per-
 formed by the Animal process on the host and not
 in the multiprocessor and the application designer
 does not write code for the host. However, a set of
 "meta-actions" is provided that can invoke a multi-
 processor method and, as a result, a particular user-
 defined action as defined by that method. Prede-
 fined actions can also invoke another NeXT or

 UNIX application if required.
 Actions can have arguments that are constrained

 to be constant strings. Typical action arguments
 might be names of instance variables or names of
 particular representations. There are special sys-
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 tem-defined meta names that refer to context-

 dependent entities such as the currently selected
 representation or its surrounding representation.

 Actions may also use implicit information about
 the events they are handling. In particular, some ac-
 tions are representation (object)-specific, so they
 cannot be used for handling events raised in objects
 (representations).

 Translation Tables and Event/Action Binding Rules

 Event handling is specified by a mechanism similar
 to the one present in various UI toolkits (for ex-
 ample, the X intrinsic toolkit); it is the concept of
 translation tables.

 A translation table maps an event to an action
 list, and so specifies how to handle a particular
 event. A translations table is specific to a particular
 context (i.e., a representation or instance). The ac-
 tion list can be empty, which means that nothing
 should be done. If there are several actions in an ac-

 tion list all of them will be performed when their
 event is raised in the context of this translation
 table.

 Translation tables are not generally complete;
 that is, they do not need to define actions for all
 possible events. Depending on the context, an event
 may be looked up in a number of translation tables
 in order to find a suitable action.

 As mentioned above, translation tables may be
 associated with representations or with object in-
 stances. Each object in a class shares the same
 translation table-they are considered to be proper-
 ties associated with the class.

 When an event is raised, the following rules are
 used to determine which action to perform. If an
 event is raised inside an object, the translation
 table associated with the class of that object is
 used. If the event is not found in that translation

 table, then no action will be performed. When an
 event is raised inside a representation, if an action
 for that event is specified in the translation table of
 the representation, that action will be invoked; if
 not, the event will be passed to the surrounding
 representation.

 A representation thus can declare which events

 it is interested in, and pass the others up the reprer-
 sentation/slot hierarchy. For example, a representa-
 tion of class Sound could map the MouseDown
 event to the Play action, while leaving the handling
 of the AltMouseDown event to the surrounding
 representation, which might, for example, delete
 the selected object.

 Object translation tables are provided in order to
 handle events that cannot be related to a particular
 representation. These events might be generated by
 user methods coming from the multiprocessor and
 might, for example, open a new full window repre-
 sentation of a particular object.

 System-Defined Actions

 The predefined actions can be divided into three
 categories: user interface choreography and con-
 trol; event routing; and interapplication commu-
 nication.

 In the choreography category there are actions to
 open or close representations, highlight or change
 representations and select or deselect representations.

 In the event routing category there are actions
 to pass an event to another object or representa-
 tion, to raise another event on the current object/
 representation or some different ones, and, in par-
 ticular, to delegate the handling of an event to a
 multiprocessor object (i.e., to application-specific
 code). The special action ignore will do nothing,
 but will block the propagation of an event to sur-
 rounding representations.

 In the interprocess communication class there
 are actions to invoke external applications using
 standard NeXT and UNIX-based interprocess com-
 munication facilities.

 System-Defined Events

 A number of events are automatically raised by
 Animal. These can be roughly divided into three
 subsets: mouse events, high-level user events, and
 object maintenance. Mouse events include Mouse Up,
 MouseDown, and MouseMoved. High-level user
 events include ObjectMoving, ObjectMoved,

 Lindemann and deCecco 95

This content downloaded from 132.174.250.220 on Thu, 31 Oct 2019 01:38:59 UTC
All use subject to https://about.jstor.org/terms



 ObjectSelected, and ObjectDoubleClick. Object
 maintenance events include ObjectDearchived,
 ObjectFreeing, and ObjectInitializing.

 System-Defined Translations

 Part of the Animal system itself is implemented in
 the form of a set of predefined system translation
 tables that are inherited from basic objects and re-
 presentations. Such translations can be overridden
 in order to customize the behavior of standard Ani-

 mal operation.

 Libraries and Application Archiving

 An Animal application consists of a set of class
 definitions, with their methods and graphic repre-
 sentations, and an instance graph.

 Application Directory Structure

 An Animal application is archived using a directory
 hierarchy. Each application maps onto a directory
 with the same name as the application, and a ".ani-
 mal" file name extension. The directory contains
 several subdirectories and the instance archive file.

 This file is an archive created with the NeXTStep
 object archival system.

 The "src" subdirectory contains the source files
 for all the user-written or default methods, ".h"
 header files defining the class structures, and a
 "makefile." The ".h" files and the "makefile" are

 automatically generated by Animal. The "obj" di-
 rectory contains the object files obtained by com-
 piling the sources in the "src" directory. Other di-
 rectories can be created when necessary to store
 user-level help files or other auxiliary files.

 Archive File Format

 The archive file consists essentially of four parts:
 the class table, a representation table of all the
 graphic class representations, the instance graph,

 and screen information. Each entry in the class
 table contains the number and type of instance
 variables, a list of references to representations that
 are bound to the class. Each entry in the reference
 table contains the graphical description of the rep-
 resentation. The instance graph is archived in such
 a way that all instance variables and pointer refer-
 ences are preserved. The screen information keeps
 track of the windows that were visible at archive
 time and their locations on the screen Actual

 windows are not saved, because they are rebuilt
 using information from the class and representation
 tables. This structure was chosen to permit an effi-
 cient implementation of reusable object libraries.

 Reusable Libraries

 In an environment oriented toward rapid prototyp-
 ing it is important to support a high degree of reus-
 ability. Animal supports two levels of reusability:
 reusability of objects inside a project and reusabil-
 ity by easy sharing of objects between projects.

 Reusability inside a project is provided by an en-
 vironment that encourages specification by cloning
 in every phase of the prototyping cycle, from the
 interface to the multiprocessor methods, and by
 providing an inheritance mechanism in the applica-
 tion data model. Sharing objects between projects is
 supported through centrally maintained libraries
 for the different entitles in an Animal application.

 The Animal architecture has three kinds of en-
 titles that can be considered as modules to be

 shared between projects: the classes (including
 method sources), the representations, and the in-
 stance graphs or subgraphs.

 The objects that are stored in a library are re-
 stored from the archive library when an application
 is read in. An object is never stored in an applica-
 tion and a library. The application always archives a
 reference to the object in the library. Each entry in
 a library has a unique name, which serves as a ref-
 erence key. All applications using a library entity
 will always restore the most current version.
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 Basic Libraries

 The Animal library system is a specialization of the
 "basic library" mechanism that creates libraries of
 arbitrary Objective C objects. A basic library con-
 tains objects, which are archived and restored with
 standard Objective C methods.

 The objects are accessed through a library index-
 a name-which is stored in an index file and loaded

 during the application start-up. The use of the in-
 dex file can be expanded in the future to provide a
 query/search mechanism on libraries.

 An application has a user-defined library path as-
 sociated with it, declaring all the libraries to which
 the application has access. Objects are loaded by
 name; this name is interpreted in a name space
 built by the union of the names defined by the set
 of libraries listed in the library search path. Loading
 the object from a library is much the same as re-
 storing it from an application archive file. There are
 important differences in the archival behavior,
 however.

 Archiving an object obtained from a library will
 not archive the object itself, but will archive a spe-
 cial delegate object that, at restore time, will auto-
 matically substitute itself with the original object
 reloaded from the library. An object can easily be
 saved to a library and, from then on, will be loaded
 from it.

 Animal Libraries

 As mentioned, the Animal library mechanism
 builds upon the basic NeXTStep library mecha-
 nism. Classes, representations, and graphs are not
 orthogonal in Animal; the graph nodes are typed, so
 class information must be stored with each graph.
 The class information may make references to the
 representations, so we need to store references to
 representations with classes. Moreover, class in-
 stantiation is realized by copying prototype objects,
 so we need to store instance graphs with classes.

 For these reasons we define a special Animal
 library mechanism that contains three kinds of
 entities: classes, representations, and instance

 subgraphs. On loading a particular entity from the
 library all the related entities will be loaded. On
 saving to a library all related entities will be ar-
 chived. From the user's point of view, an Animal li-
 brary consists of a class library, with an associated
 instance graph library, and representation library.

 Maintaining a Library

 To add an object to a library, a representation of
 that object is selected and the Add Object to
 Library menu command is executed. A dialogue
 box appears with a file browser to choose or create
 a library. The representation, the class information,
 and the subgraph emanating from the selected in-
 stance will be archived to the library. The subgraph
 is defined by the archive properties of the pointer
 instance variables of the class. More than one in-

 stance subgraph can be stored for a particular class.
 New representations and classes can be added to

 a representation by selecting them from a library. If
 there is more than one instance to choose from, the
 library browser will reflect this fact and allow the
 user to select a particular instance. Both reference
 copies and deep copies can be made from a library.
 A deep-copied instance will be stored with the ap-
 plication archive. A reference copy will always be
 loaded from the library. Library security is provided
 through the use of UNIX file permissions.

 Restoring an Application with References to a
 Library

 Class templates and representation information are
 loaded using the basic library mechanisms de-
 scribed above. Methods and instance subgraphs are
 somewhat different. Method source files are simply
 linked to the application source directory.

 Restoring is a more elaborate process. Each in-
 stance graph that is stored in a library is analyzed
 in order to identify its entry and exit points: that is,
 nodes inside the subgraph which point to nodes
 outside the subgraph, and nodes inside the sub-
 graph which are pointed to from nodes outside the

 Lindemann and deCecco 97

This content downloaded from 132.174.250.220 on Thu, 31 Oct 2019 01:38:59 UTC
All use subject to https://about.jstor.org/terms



 subgraph. The subgraph is stored with an entry/
 exit point table that provides symbolic indices for
 each subgraph entry and exit point.

 In the application archive a "root reference ob-
 ject" is substituted for the subgraph. This object
 contains the values for all the exit points together
 with its symbol as found in the entry/exit point
 table. The reference object also stores the symbol
 associated with each subgraph entry point. When
 restoring archives, the subgraph from the library is
 substituted for the reference objects and all pointers
 are reestablished using their symbolic representa-
 tions as stored in the entry/exit point symbol table.

 Version Control

 All classes, when stored in libraries, have a major
 and minor version number associated with them. A

 minor version change, does not imply incompat-
 ibility with previous versions and is used for docu-
 mentation purposes. Major version number changes
 may introduce incompatibility with previous ver-
 sions. In this case a number of mechanisms are pro-
 vided to support automatic conversion.

 Representation changes are handled semiauto-
 matically. However, a large change in dimension
 may require a manual user intervention. Class
 changes can affect the application in two ways: af-
 fecting the structure of an instance archived within
 the application; or changing the structure of the li-
 brary instance subgraph (the interconnections be-
 tween objects in the graph).

 In the first case the archived instances are

 restored, mapping the old instance variables to
 the new instance variables following a simple
 heuristic-old names are mapped to new names
 according to type. Then a user-defined method is
 called for each instance, with the restored instance
 and a copy of the new subgraph from the library as
 arguments. This method must perform all addi-
 tional modifications using the new instance sub-
 graph as a template.

 In the second case the library utility provides a
 way to associate graph entry/exit point table re-
 mapper with an instance. This permits the specifi-

 cation of a mapping between the entry and exit
 points of the old version and those of the new ver-
 sion, thus allowing for the automatic conversion of
 the application's instance graph to the new format.

 The Programming Environment

 As mentioned above, all user code is written for the
 multiprocessor, and none for the host Animal pro-
 cess. The main features of the programming envi-
 ronment are incremental method loading and an
 automated "make" utility. Programming an Animal
 application involves writing methods for classes,
 where the classes have been defined graphically
 through manipulation of their representations.
 A method can be declared by placing a method
 representation-a kind of text box-inside a repre-
 sentation of the class using the Method tool, or de-
 clared directly, by using the class inspector. In any
 event the class inspector will always provide a com-
 plete list of methods. The source code for methods
 can be edited by double-clicking the mouse on the
 representation of the method, either in a class rep-
 resentation or in the class inspector. This opens an
 editor on the source file. If a user-defined method

 has just been declared, then a "do nothing" tem-
 plate method will be automatically generated with
 the appropriate include files, and so forth.

 Program Structure

 Animal expects and automatically generates a num-
 ber of files. In particular, it creates an ".h" header
 file for each Animal class, containing the class defi-
 nition. This is generated and maintained by Ani-
 mal. A ".c" source program file is created with a
 default "set" and "get" method for each instance
 variable of a class. This file is generated by Animal
 but can be written or modified by the programmer.
 The programmer version is guaranteed to survive
 subsequent automatic updates. Animal also creates
 a ".c" file for each user-defined method of the class.

 This file is generated by Animal (using a "do noth-
 ing" template) as soon as a method is declared. The
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 file must be modified by the programmer. All pro-
 grammer modifications are guaranteed to be persis-
 tent. The user is, of course, free to add application-
 dependent header or source files.

 Compilation and Loading

 Animal automatically generates a makefile for the
 application. This makefile has targets for specifying
 the compilation and loading of a single file or of all
 the files based on the standard makefile dependencies.

 Depending on the modifications that have taken
 place since the last compilation, Animal will either
 call the make utility with "all" as the target, using
 the make program's policy to keep dependencies be-
 tween files, or will use make to compile the mini-
 mal set of files that need to be updated. This is to
 avoid unnecessary recompilation of all methods
 when a downward-compatible class modification
 (such as adding an instance variable) has been made.

 Incremental loading is always mediated by the
 Animal process and requested by the make com-
 mand through the use of a shell command. The
 makefile keeps track of which object files have
 been loaded and will never reload an unmodified
 object file.

 Compiling and Loading from Outside Animal

 If the programmer finds it convenient to do so, the
 make utility can be used from outside Animal to
 compile and load the application. In order to incre-
 mentally load the object files on the multiproces-
 sor, the Animal process must be running. Methods
 can always be compiled outside of the run-time en-
 vironment, however.

 Debugging

 Currently there is no support for debugging multi-
 processor methods from inside Animal, but the
 "gdb" debugger can be used in parallel from another
 window or from within the GNU emacs text editor.

 Current Status of Animal

 At the time of this writing, Animal does not fully
 implement the functionality described in this ar-
 ticle. The user-defined event handler has not been

 implemented yet. This means that a user must be
 content with the kind of command input and win-
 dow management that is built into the system. In-
 heritance, while supported by the underlying data
 model, is not yet supported by the user interface.
 The copying and archival strategy described above
 is fully supported, but the user interface is still
 based on a cut/paste paradigm rather than on icon
 dragging.

 The Region/Set/Ruler/Wall group of functions is
 implemented, but without type-checking for in-
 stances placed in a set; typed sets are supported in
 the internal data model, but a user interface for it
 has not yet been developed. An arbitrary origin for
 measurement cannot be placed on a graphic in the
 current version. One must select between use of

 one of the corners or the center as the origin. The
 class browser and other system-level browsing win-
 dows are not yet implemented. One must deter-
 mine the structure of a class from its various

 representations.

 Conclusion

 Animal implements a general data and user inter-
 face model. The hope is that this model will be ap-
 propriate for many computer music and real-time
 control applications. The data model is a free net-
 work of objects. The user interface model allows
 the creation of multiple arbitrary representations of
 these objects, as well as providing mechanisms for
 the manipulation of the object network-cloning
 objects, creating references, copying subnetworks,
 and managing sets of objects. Animal also supports
 archiving of the object network as well as shared li-
 braries of objects.

 Animal has been used to build the sampling syn-
 thesizer example described in this article. A num-
 ber of other applications are being considered, in-
 cluding a user interface and object management
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 system for "Mosaic," a physical modeling synthesis
 program developed at IRCAM, a graphic program
 for designing interactive musical compositions in
 terms of state transitions (e.g., State 1: wait for a
 note in the range C3-A4 and then start sequence
 five and move to State 2, or if no note is found
 within 7.25 sec move to State 3).

 Animal is also being connected with the MAX
 graphical programming language (Puckette 199 1b).
 Seen from the point of view of the Animal devel-
 oper, this will allow the graphic definition of meth-
 ods for Animal classes, making it possible to build
 applications without writing any C code. Seen as an
 enhancement to MAX, Animal will provide richer
 graphic visualizations as well as management of
 sets of objects.
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